The structure and dynamics of overturns in stably stratified homogeneous turbulence
نویسندگان
چکیده
Direct numerical simulations of stably stratified homogeneous turbulence, with and without mean shear, are used to investigate the three-dimensional structure, evolution and energetic significance of density overturns. Although the flow conditions are idealized, examination of the full-field simulation data provides insight into flow energetics and mixing which may assist in the interpretation of physical measurements, typically limited to one-dimensional vertical profiles. Overturns, defined here through the density field as contiguous regions of non-zero Thorpe displacement, are initially generated by the stirring action of coherent vortex structures present in the flow and further develop through merging with adjacent overturns. During this growth phase, overturns exhibit irregular spatial structure in unsheared flow and elongated structure with distinct orientation in shear flow. Although most of the available potential energy (APE) and buoyancy flux are associated with stable (non-overturning) regions in the flow, young overturns actively contribute to the flow energetics. In particular, overturn peripheries are sites of high levels of APE, buoyancy flux and diapycnal mixing. A collapse phase may follow the growth phase in the absence of adequately strong mean shear. During this phase, buoyancy gradually assumes control of the overturns and their vertical scale steadily decreases. The energetic significance of the overturns diminishes, although high APE and diapycnal mixing continue to occur near their boundaries. In the final phase of their evolution, overturns contribute negligibly to the energetics. The remaining overturns are characterized by a viscous–buoyant balance which maintains their vertical scale. The overturns eventually vanish due to homogenization of their internal density distribution by diffusion. Activity diagrams, sampled at different points of flow evolution, show significant variation in overturn Reynolds and Froude numbers which may have implications for vertical sampling of a turbulent event.
منابع مشابه
Automated Tracking of 3-D Overturn Patches in Direct Numerical Simulation of Stratified Homogeneous Turbulence
Direct numerical simulation is a valuable tool for modeling turbulence, but like “wet lab” simulation, it does not solve the problem of how to interpret the data. Manual analysis, accompanied by visual aids, is a time consuming, error prone process due to the elaborate timedependent structures appearing in simulations. We describe a technique based on volume tracking, that enables the worker to...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کاملA multiscale point of view on the dynamics of stably stratified turbulence associated with geostrophic modes: simulations and model
We study the dynamics and horizontal layering of homogeneous stably stratified turbulence (SST) from the point of view of two-point correlation spectra. We retain the most complete spectral description that is available in this axisymmetric setting, by computing the angular-dependent spectra, so that we observe the anisotropy of the flow at each scale — that is at a given wavenumber — and for e...
متن کاملPreferential concentration of heavy particles in stably stratified turbulence.
The effect of preferential concentration of heavy particles in a homogeneous stably stratified turbulent flow is studied by means of direct numerical simulations. Particle distributions show different clustering patterns in horizontal and vertical directions, thereby representing the anisotropy of the flow. Preferential concentration in stably stratified turbulence can be quantified using 2D an...
متن کاملOn the turbulent Prandtl number in homogeneous stably stratified turbulence
In this paper, we derive a general relationship for the turbulent Prandtl number Pr t for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Pr t , is developed in terms of a mixing length scale LM and an overturning length scale LE , the ratio of the mechanical (turbulent kinetic energy) deca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003